The zero-sum constant, the Davenport constant and their analogues

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Davenport constant and on the structure of extremal zero-sum free sequences

Let G = Cn1 ⊕ . . .⊕Cnr with 1 < n1 | . . . |nr be a finite abelian group, d∗(G) = n1 + . . .+ nr−r, and let d(G) denote the maximal length of a zero-sum free sequence over G. Then d(G) ≥ d∗(G), and the standing conjecture is that equality holds for G = Cr n. We show that equality does not hold for C2 ⊕ Cr 2n, where n ≥ 3 is odd and r ≥ 4. This gives new information on the structure of extremal...

متن کامل

Davenport constant with weights

For the cyclic group G = Z/nZ and any non-empty A ∈ Z. We define the Davenport constant of G with weight A, denoted by DA(n), to be the least natural number k such that for any sequence (x1, · · · , xk) with xi ∈ G, there exists a non-empty subsequence (xj1, · · · , xjl) and a1, · · · , al ∈ A such that ∑l i=1 aixji = 0. Similarly, we define the constant EA(n) to be the least t ∈ N such that fo...

متن کامل

On the Davenport Constant and Group Algebras

For a finite abelian group G and a splitting field K of G, let d(G, K) denote the largest integer l ∈ N for which there is a sequence S = g1 · . . . · gl over G such that (X g1 − a1) · . . . · (Xl − al) 6= 0 ∈ K[G] for all a1, . . . , al ∈ K . If D(G) denotes the Davenport constant of G, then there is the straightforward inequality D(G)−1 ≤ d(G, K). Equality holds for a variety of groups, and a...

متن کامل

Upper Bounds for the Davenport Constant

We prove that for all but a certain number of abelian groups of order n the Davenport constant is at most nk + k − 1 for positive integers k ≤ 7. For groups of rank three we improve on the existing bound involving the Alon-Dubiner constant.

متن کامل

Remarks on a generalization of the Davenport constant

A generalization of the Davenport constant is investigated. For a finite abelian group G and a positive integer k, let D k (G) denote the smallest ℓ such that each sequence over G of length at least ℓ has k disjoint non-empty zero-sum subsequences. For general G, expanding on known results, upper and lower bounds on these invariants are investigated and it is proved that the sequence (D k (G)) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Technical Transactions

سال: 2020

ISSN: 2353-737X,0011-4561

DOI: 10.37705/techtrans/e2020027